

THE EU VIGIE 2020/654 STUDY FOR HIGH QUALITY 3D DIGITIZATION

DR. MARINOS IOANNIDES

DR. PETROS SIEGKAS

UNESCO Chair on Digital Cultural Heritage - MNEMOSYNE

Mechanical Engineering Design and Additive Manufacturing - MEDAM

CYprus University of Technology - CUT

EIREKA3D

unesco Chair

CLIO.

ERATO.

EUTERPE.

MELPOMENE.

POLYHYMNIA.

TERPSICHORE.

URANIA.

The main object stakeholders/ p <u>define and produ</u> 3D digitisaion p

The <u>elements</u> different para COMPLEXITY and

Unesco Chair

enabling CH ligitisation services <u>to</u> le context of specific

level **of**

COMPLEXITY definition should :

 provide a meaningful tool for planning the 3D data acquisition, modelling and visualization
and connect to the Data Acquisition QUALITY results

Study at the request of and financed by the European Commission,)irectorate-General of Communications Networks, Content& Technology

5

3D Digitisation

Object Size

Survey techniques defined by object complexity (points captured) and size. © ADAPTED FROM BOEHLER & HEINZ (1999)

VIGIE 2020/654

Study at the request of and financed by the European Commission, Directorate-General of Communications Networks, Content & Technology

The definition of Complexity in 2D and 3D digitisation - today

A COMMON GROUND OF UNDERSTANDING

Study at the request of and financed by the European Commission, Directorate-General of Communications Networks, Content& Technology

Cyprus University of Technology

7

UNESCO Chairon Study at Digital Cultural Heritage at Study at Directoral

Study at the request of and financed by the European Commission, Directorate-General of Communications Networks, Content & Technology

Complexity Parameters

- How Complexity is connected to purpose of 3D digitization?
- How Complexity is connected to Technology?
- What is the limiting factor in 3D digitization process today?
- Synthesis a Decision-making workflow
- Do we need a definition of "Object Complexity"?
- How Complexity is defined How is it measured?
- How Complexity is connected to Quality?

9

Study at the request of and financed by the European Commission, Directorate-General of Communications Networks, Content & Technology

Identify and analyse the parameters that determine quality in 3D digitisation of tangible cultural heritage

How Complexity is connected to Quality?

Degrees of object quality and component considerations

QUALITY	IMMOVABLE			MOVABLE				
Degree of Complexity	Low	Medium	High	Ultra- High	Low	Medium	High	Ultra- High
Geometric Accuracy								
Precision			a second	500				
Accuracy/rms	10cm	1cm	1mm	<1mm	1cm	1mm	100µm	<100µm
Radiometric Accuracy								
Reflectance			686		23.3.5	1000		
Transmittance			-72		1000	0	1	
Absorbance	1			S. Carl	They are			-
Completeness								
% of "blank" pixels	<10%	<10%	<10%	<10%	<10%	<10%	<10%	<10%

Our assumption is that Resolution should not differ from Accuracy since it does not make sense to collect denser points than the accuracy level

VIGIE 2020/654

Study at the request of and financed by the European Commission, Directorate-General of Communications Networks, Content & Technology

Documentation systems

		Panorama 360 photography			
Image-based	Photogrammetry	Close-range photogrammetry			
		Unmanned Aerial Vehicle / Drone			
	Infrared cameras	Seal TELESTIC			
Non-Image-based	Turditional summer	Hand survey			
	Traditional survey	Theodolite measurement / Total Station			
		Terrestrial laser scanner			
	Laser Scanner	Lidar			
Combinative Methods	Integrated photo-laser scanner				
	Structured-light scanner	Structured-light scanner			

DOCUMENTATION SYSTEMS

Study at the request of and financed by the European Commission, Directorate-General of Communications Networks, Content & Technology

Mathematical definition of quality

QUALITY is a mathematical function (similar to complexity) related to:

- Budget
- Time
- Skills of personnel
- Technology (data acquisition: hardware and software)
- Software for the pre-processing and filtering, post-processing
- Object (IPR, conditions, environment, material, geometry etc.)
- Presentation [(information: Paradata, Metadata), data]
- <u>USER NEEDS</u> (reverse engineering)

Study at the request of and financed by the European Commission, irrectorate-General of Communications Networks, Content & Technology

How Complexity is defined – How is it measured?

- Complexity will determine to high degree the technology to be used. E.g. it is quite difficult and unproductive to use Photogrammetry to record the complexity of a cave, whereas Laser scanning is the suggested technology in this case.
- Complexity is the missing connection between the Quality and the Purpose-of-use. E.g. although possible it is useless to use UAV imagery to map a large surrounding landscape of an archaeological site, whereas satellite imagery is much preferable.
- Complexity imposes restrictions on both the technology and intended use. E.g. surface transparency violates basic photogrammetric rules, preventing the use of this technology; also, low reflected radiation of certain surface material poses restrictions to laser scanning.
- Complexity connects Quality, Accuracy and Completeness as long as it expresses parameters like object size or resolution requirements. E.g. complex interiors call for fusion of technologies, exploiting the merits of each one, while requirements for multiple resolutions/accuracies are often dictated by multiple uses of the same 3D acquired material.

Study at the request of and financed by the European Commission, irectorate-General of Communications Networks, Content& Technology

VIGIE 2020/654

Study at the request of and financed by the European Commission, Directorate-General of Communications Networks. Content & Technolog

Cyprus University of Technology

16

17

VIGIE 2020/654

Study at the request of and financed by the European Commission, Directorate-General of Communications Networks, Content & Technology

Complexity parameters: Team

Study at the request of and financed by the European Commission, Directorate-General of Communications Networks, Content & Technology

GC21

Autoului

Cank of Cyprus Cultural Foundation

Collection of CT tomography data:

Understanding of the manufacturing technique

VIGIE 2020/654

Study at the request of and financed by the European Commission, Directorate-General of Communications Networks, Content & Technology

Quality parameters: 2D and 3D

The Geometry in this case is complex due to high resolution, point density, geometrical accuracy and precision.

VIGIE 2020/654

Study at the request of and financed by the European Commission, Directorate-General of Communications Networks, Content & Technology

VIGIE 2020/654

Study at the request of and financed by the European Commission, Directorate-General of Communications Networks, Content & Technology

Process Complexity

Process Quality

Study at the request of and financed by the European Commission, Directorate-General of Communications Networks, Content & Technology

VIGIE 2020/654

Study at the request of and financed by the European Commission, Directorate-General of Communications Networks, Content & Technology

VIGIE 2020/654

Study at the request of and financed by the European Commission, Directorate-General of Communications Networks, Content & Technology

Software & Hardware

Study at the request of and financed by the European Commission, Directorate-General of Communications Networks, Content & Technology

User: Cloud/Workstation Software: Filtering/Distortion Hardware: CPU(s) - Power Software: Point cloud density/Standard Deviation Hardware: GPU(s)

- Software: Overlapping Rate Hardware: Memory (internal & external)
- Software:

Resolution in Bytes of Software/Images or 2D/3D Points/Max. number of Images and/or Proints

Hardware:

Operating System (Byte Resolution)

VIGIE 2020/654

Study at the request of and financed by the European Commission, Directorate-General of Communications Networks, Content & Technology

VIGIE 2020/654

Study at the request of and financed by the European Commission, Directorate-General of Communications Networks, Content & Technology

33

VIGIE 2020/654

Study at the request of and financed by the European Commission, Directorate-General of Communications Networks, Content & Technology

VIGIE 2020/654

Study at the request of and financed by the European Commission, Directorate-General of Communications Networks, Content & Technology

NESC

Study at the request of and financed by the European Commission, Directorate-General of Communications Networks, Content & Technology

Formats, standards, benchmarks, methodologies and guidelines

Identify and analyse existing formats, standards, benchmarks, methodologies and guidelines that are relevant for 3D digitisation of tangible cultural heritage (including metadata)

 \bigcirc

VIGIE 2020/654 Study at the request of and financed by the European Commission

Study at the request of and financed by the European Commission, Directorate-General of Communications Networks, Content & Technology

Dr. Petros Siegkas

Study at the request of and financed by the European Commission, Directorate-General of Communications Networks, Content & Technology

Considerations on quality and qualities

Modelling strategy e.g.

Equipment

Materials

- Showcase interior
- Showcase exterior
- Multiple pieces ease of split-open
- Emphasis on particular elements
- Function, demonstration, aesthetics
- Stereolithography UV resin
- Fusion deposition modelling
- Combination based on texture/resolution

- Transparency
- Colour
- Combination for various features

Study at the request of and financed by the European Commission, Directorate-General of Communications Networks, Content & Technology

Study at the request of and financed by the European Commission, Directorate-General of Communications Networks, Content & Technology

Model fix and editing CAD programs Show interior

Allow for resin to escape

VIGIE 2020/654

Study at the request of and financed by the European Commission, Directorate-General of Communications Networks, Content & Technology

features, avoid cups and potential collapse)

Co-funded by the European Union

Supports and orientation (Overhanging parts, small

Study at the request of and financed by the European Commission, Directorate-General of Communications Networks, Content & Technology

3D printed reproduction of Van Gogh's Mises

Dr Petros Siegkas

MEDAM Lab

Study at the request of and financed by the European Commission, Directorate-General of Communications Networks, Content & Technology

MAR NORE PONT EVEN

THANKYOU 1arinos.ioannides@cut.ac.cy

Detros Stormy Petros Store Sto

Study at the request of and financed by the European Commission, Directorate-General of Communications Networks, Content & Technology

